
1

Abstract — Securing a Grid environment presents a
distinctive set of challenges. This paper groups the activities
that need to be secured into four categories: naming and
authentication; secure communication; trust, policy, and
authorization; and enforcement of access control. It examines
the current state of the art in securing these processes and
introduces new technologies that promise to meet the security
requirements of Grids more completely.

Index Terms — Grid security, authentication, authorization,
trust management, secure communication, security policy

I. INTRODUCTION

The goal of Grid Computing is to create a “virtual

organization” across one or more physical organizations (or

“administrative domains”). The resources of these virtual

organizations range in scale from a small number of large

clusters (such as the TeraGrid [1]) to millions of PC-class

machines (such as SETI@Home [2]). The resulting value of

the virtual organization to users in each of the physical

organizations is that the users can be more productive, either

in their own activities or in their collaborations with other

people across the virtual organization. This enhanced

productivity is achieved by having access to a greater number

or variety of resources (such as computers, databases, or

specialized equipment) or by having easy-to-use mechanisms

by which to collaborate with others outside of the user’s home

enterprise.

These virtual organizations require common solutions for

resource management, data management and access,

application development environments, and information

services. In many ways, arguably, the most significant

challenge for Grid computing is to develop a comprehensive

set of mechanisms and policies for securing the Grid. Users

need to know if they are interacting with the “right” piece of

software or human, and that their messages will not be

modified or stolen as they traverse the virtual organization (if

the users have such a requirement). Users will often require the

Manuscript received April 4, 2004. This work was supported in part by
the National Science Foundation under grants ACI-0203960, ANI-0222571,
and the National Partnership for Advanced Computational Infrastructure
(NPACI); and U.S. Department of Energy, Office of Science, Office of
Advanced Science, Mathematical, Information and Computation Sciences
under contract DE-AC03-76SF00098. LBNL Report Number 54853

M. Humphrey is with the Department of Computer Science of the
Univers i ty o f Vi rg in ia , Char lo t t e sv i l l e , VA (e-mail:
humphrey@cs.virginia.edu). M. R. Thompson is with Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA (e-mail:
mrthompson@lbl.gov)

K. R. Jackson is with Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA (e-mail: krjackson@lbl.gov)

ability to prevent others from reading data that they have

stored in the virtual organization. In short, users must trust

the software infrastructure of the Grid to sufficiently prevent

malicious activities (of course, it is reasonable to expect that

the user must be proactive in this regard and that this does not

come without some burden on part of the individual user).

One of the critical differences between Grid security and

host or site security regard site autonomy. If a system

administrator is faced with the challenge of securing a host or

site, the system administrator generally establishes a logical

barrier around the site or host and analyzes the ways in which

access to that host or site can be gained through the barrier.

For each mechanism, simplistically, if the reward is greater

than the risk, then the mechanism is allowed to exist. For

example, many default services on a Linux machine will be

disabled as a result of this analysis to prevent attackers from

potentially gaining access to the machine. In contrast to this

situation in which the system administrator has complete

control to modify both the security mechanisms and security

policies, resource providers for the virtual organization of the

Grid must understand and accommodate mechanisms and

policies that are not strictly under their control. For example,

one site might allow password-based logins while another

might require Kerberos-based logins [3]. While the virtual

organization certainly could define some common security

mechanisms and policies across the entire virtual organization,

it is more often the case that the Grid spanning the two sites

must accommodate both approaches (in other words, the

physical organization takes precedence over the virtual

organization). In addition, a site that provides resources to a

Grid might now have to consider opening some access points

that were closed in the process of securing the host or site so

that the resource can be utilized by non-local members of the

virtual organization.

While acknowledging and respecting this fundamental need

for site autonomy, there are a number of requirements for Grid

security in order to achieve the goals of the virtual

organization. Users need globally defined names that will be

recognized at all sites to which they have access. A user’s

identity needs to be passed securely and transparently between

sites as a job progresses. Grid sites need to enter into trust

relations with Grid users and with the other Grid resource

sites. Users need a simple, consistent way to get authorization

to use the Grid resources, e.g., same mechanisms across

multiple sites.

This paper presents the state of the art with regard to Grid

security and identifies open issues. After introducing

terminology (Section II), this paper groups the techniques for

securing the Grid into five categories: naming and

Security for Grids

Marty Humphrey, Mary R. Thompson and Keith R. Jackson

2

authentication, communication, trust management,

authorization and enforcement. The goal of this paper (and our

earlier work on the security implications of basic Grid usage

patterns [4]) is to enable Grid users and Grid resource

providers to understand the best practices with regard to Grid

security and to understand the difficult challenges that to date

remain unsolved.

II. TERMINOLOGY AND BACKGROUND

There are a number of basic definitions regarding computer

security (for an excellent treatment of computer security in

general see [5], the RSA FAQ [6], and Peter Gutmann’s on-

line tutorial [7]). Authentication is the act of ensuring that

someone or something is whom they claim to be.

Authorization is the right to perform some action (such as

reading a particular database). Integrity refers to the ability of

the computer system to ensure that the data is protected from

unauthorized modifications. Confidentiality is the ability to

keep information from being disclosed to unauthorized users.

Privacy refers to the ability to keep some information solely

to oneself. Availability refers to the ability of authorized

parties to obtain access to the information when it is needed.

Non-repudiation refers to the inability of something that

performed a particular action such as a financial transaction to

later deny that they were indeed responsible for the event.

Trust can be defined as the assured reliance on the character,

ability, strength, or truth of someone or something.

There are four general categories of attacks on security

services. Interruption occurs when a message is blocked

to/from a particular service. Interception refers to an intruder

catching but not necessarily blocking a message intended for a

recipient. Modification refers to the action of intercepting,

modifying, and then re-transmitting a message to a security

service. Fabrication refers to generating a new message from

scratch and attempting to insert it into the normal message

flow.

There are a number of cryptographic mechanisms to prevent

the four categories of attacks on security services. These

mechanisms underlie the Grid-specific technologies that are

the subject of the remainder of this paper

Integrity. Integrity checks are provided primarily via hash

functions (or “message digests”). For example, software

developers often make their software available on their web

sites and also state the MD5 [8] value of the distribution file.

To verify integrity, once the distribution file is downloaded

onto the local machine, the MD5 algorithm is performed on

the local file. If the MD5 value computed locally is the same

that is published on the web site, then the distribution file on

the local machine is the same as the one in which the author

performed the MD5. Note that the correctness of this approach

is predicated on the security of the site from which the

distribution file was downloaded (an attacker could have

maliciously replaced both the distribution file and the MD5

value), and that it is computationally infeasible to produce

two distribution files with the same MD5 values. If the

integrity of the download site is questionable the MD5 hash

can be signed, and the public key needed to verify the

signature provided from another more secure site.

Confidential i ty . The standard approach to ensure

confidentiality is through encryption, which is the application

of an algorithm that transforms “plaintext” to “ciphertext”

whose meaning is hidden but can be restored to the original

plaintext by another algorithm (the invocation of which is

called decryption). Secret algorithms, which by definition are

intended to be known only by the parties involved, are not

generally used in the commercial or scientific sectors because

they are not subject to public scrutiny and thus believed to be

inherently weaker. Public algorithms can be symmetric or

asymmetric; “symmetric” means that the same key is used to

both encrypt and decrypt the message (both the sender and the

receiver have a copy of this key). Symmetric cryptography is

also known as secret-key cryptography. In contrast,

asymmetric cryptography is often referred to as public-key

cryptography because each participant has two keys, one called

the public key and one called the private key (which the owner

keeps secret). The two keys are mathematically related. In

asymmetric cryptosystems that support encryption/decryption,

the sender encrypts the message with the receiver’s public key

and sends the message; the receiver decrypts the message with

the receiver’s private key. Because only the receiver has the

private key, the message is confidential. The most popular

symmetric encryption algorithm is the Data Encryption

Standard (DES) [10], although the strength of DES has been

called into question, and NIST currently recommends using

the new Advanced Encryption Standard (AES) algorithm[11].

The most popular public-key cryptosystem is RSA [12]

(which supports both encryption/decryption and digital

signatures, discussed shortly).

Authentication. In general, authentication is through the

presentation of some token that cannot be forged. This can

either be in a peer-to-peer relationship—such as a password

that only the client and the server know—or through a trusted

third party such as a Kerberos server or a Certification

Authority (CA). Biometrics can also be used, especially as a

mechanism by which a human can acquire a token that is later

presented to a service for authentication purposes. For

example, a fingerprint scanner can be used to login to a local

machine.

Non-repudiation. The digital signature can be used to claim

that an entity was uniquely responsible for a message or

action. For example, a document is digitally signed usually

by taking the hash of the document (such as described in the

“Integrity” section, previously), encrypting the hash with the

sender’s private key, and attaching the signature to the

cleartext message. The receiver of the message checks the

signature by calculating the hash of the cleartext document and

comparing the hash value with the value purportedly attached

to the message itself (note that the receiver first decrypts the

value attached to the message with the purported sender’s

public key). If the two has values match, the receiver has

strong evidence to believe that only the purported sender could

have sent the message. (Note that the use of a digital signature

is for authentication and is orthogonal to the use of public-key

cryptography for confidentiality.) The Digital Signature

3

Algorithm DSA is a popular public-key algorithm that can

only be used for signatures and not encryption. Although

digital signatures provide an important building block for

non-repudiation, they are not sufficient. A malicious user

could conduct a financial transaction with someone; digitally

sign the transaction for payment, and then later claim that his

private key had been stolen before the transaction occurred.

One proposal to mitigate this risk is the use of a trusted Time

Stamp Authority [9]. The TSA would attest to the fact that a

transaction took place at certain time by attaching a digitally

signed time record to the original signature.

Extensive logs can also be used as the basis for claiming

that a particular user performed a particular action. As

compared to unsigned logs, digital signatures are largely

regarded as stronger evidence for non-repudiation because of

the implicit belief that access to a user’s private key (to

impersonate the user) is more difficult than, say, obtaining a

password that the user might use to gain access to some

service or gaining access to tamper with the logs

Authorization. There are two general approaches for

authorization: identity-based or token-based. Identity-based

approaches are typically associated with access control lists,

while token-based approaches are also referred to as capability-

based authorization. In identity-based approaches, only the

authenticated user identity is presented to the resource, which

then checks an internal list of allowed identity/action pairs. In

token-based approaches, an unforgeable token is granted to the

user, who then presents it to the service as proof of her rights.

In some sense, the service does not care who the presenter is,

rather just that the request came with the appropriate token. A

drawback of identity-based approaches is that identity-based

approaches cannot easily support delegation, in which one

person allows/requests another user or software agent to act on

the user’s behalf. On the other hand, a drawback of a token-

based approach is that it may be very difficult to dynamically

revoke access rights.

III. NAMING AND AUTHENTICATION

Authentication is proving your identity to some person or

some agent running on a computer. Naming is the assignment

of some identifier to a unique person or other long-lived entity

so that it can be used for authorization and auditing. Within a

single Grid, it is most convenient to have a globally unique

name for each user or entity. Since human names are not

unique, and machine or resource names are only unique within

the domain in which they are defined, defining a global Grid

identifier takes some thought.

A. Naming Approaches

There are several approaches to the global naming problem.

One is to generate a random number from a large sparse

domain space and count on the generation algorithm to ensure

its probable uniqueness. The advantage of this approach is that

names can be assigned by different agents with no co-

ordination and still be globally unique. The disadvantage is

that the identifiers tend to be long and provide no clue as to

the real world entity to which they belong. PGP public keys

are an example of such identifiers [13].

Another approach is to start with a meaningful name, such

as a person’s legal name and then add more identifying

components until it is “globally” unique. For example, John

son of Thomas of the village of Surrey, or to be more up-to-

date a DNS name of the form host.site.domain The X.500

[15] naming structure is an attempt to define enough

components that people can be named uniquely and

meaningfully. The various sites doing the naming must co-

operate to the extent that each one has a uniquely assigned

component name or names that it uses as part of all the names

it creates. This in turn requires some sort of global registry of

such names. X.509 names [16][17], derived from the X.500

standard, are commonly used by Grid software to provide

global names for users and hosts.

A third approach is to maintain that all names have

meaning only in a local context. One manifestation of this

model is SDSI (Simple Distributed Security Interface) [18],

which identifies users by a public key and allows the users

(relying parties) of these keys to assign a local name that has

meaning in their domain. These names are assigned manually

by a site administrator after reviewing the evidence presented

by the owner of the public/private key pair as to who he is. In

an attempt to allow scaling, name spaces can be linked, so

that one site can use another site’s defined names.

Identity servers such as used in Shibboleth [19],

Microsoft’s Passport server [20] and the Liberty Alliance

[21][22] map a user name and attributes onto a unique

identifying handle. These servers are designed to provide a

single signon to a set of loosely connected resource providers

such as in the Web Services model [23]. A major challenge of

an identity server is to be able to store all the attributes about

an individual that may be needed by any of the service

providers that the users wishes to contact, but at the same

time to protect the privacy of the user. To respond to users’

privacy concerns, these servers may restrict the information

that can be discovered about the holder of the handle

depending on who is asking for information. For example,

Shibboleth does not release the user’s name except to

authorized requestors. These servers support an authorization

model that allows access based on attributes such as group

membership or role in an organization, rather than identity. .

B. Techniques for Authentication

Authentication in a computer environment is the process of

associating a real-world identity with a request to a machine.

An underlying assumption of authentication is that a unique

machine-readable unique-id or global name will always be

assigned to the same unique real world person or computer.

Authentication takes place when the connecting entity

provides such a unique-id and the authenticating agent can

verify that the id legitimately represents the connecting entity.

Authentication to a single host is most commonly done by

a login process that uses a password shared by the user and the

host. In many systems the host stores only a one-way hash of

the password to increase the difficulty of a third party stealing

it. When the login in performed over the WAN, the clear text

password is very vulnerable to theft in transit from the user’s

4

keyboard to the target machine. Also if a user needs to login

on many hosts, either many passwords are required or a single

password in stored in many places, increasing the

vulnerability of one system to a security breach in another

system.

Kerberos [3] is an authentication system designed to allow

a single sign-on to many machines within an administrative

domain. Only the Kerberos Key Distribution Center (KDC)

needs to know everyone’s password. It acts as a trusted third

party between the user and a target host. Both the user and the

target host establish an authenticated secure connection with

the KDC. The KDC gives the user an encrypted token that he

can present to a target server, who can then present it to the

KDC to establish the identity of the requestor. In a Kerberos

login the user does not send the password to the KDC, but

uses it to encrypt a challenge phrase that Kerberos can decrypt

using its copy of the password. Since the KDC stores all

passwords, it becomes a single point of failure for the whole

domain. Even though the KDC is expected to be operated in a

very secure manner, the hosts that rely on a KDC tend to be

limited to a single administrative domain.

A more loosely coupled approach to authentication across

many domains is to use public key infrastructure (PKI)

technology. The target host that is going to authenticate a user

has a verified copy of the user’s public key. Authentication is

performed by the user encrypting a challenge phrase with her

private key, which the target host can decrypt with the user’s

public key. Thus proving her possession of the private key

associated with the public key. (See Section IV on Secure

Communication for more details on this protocol.)

The most common public key authentication protocol in

use in Grids today is the Transport Layer Security (TLS) [24]

protocol, that was derived from the Secure Sockets Layer

(SSL) v3 [25] protocol. TLS uses an X.509 public key

certificate [16][17], which binds a multi-component

meaningful name, called a Distinguished Name (DN), to a

public key. The binding is attested to by a Certification

Authority (CA), who performs specified actions to ensure that

the name represents the individual who knows the private key

associated with the public key. When a X.509 certificate is

presented as an authentication token, the server challenges the

connecting entity using the TLS handshake protocol to prove

its knowledge of the private key associated with the public

key in the certificate. Once the remote entity has been verified,

the authentication agent needs to secure the communication

channel so that no one but the authenticated entity can use it.

At this point there may be a local user id and/or running job

associated with the channel. From then on, all actions

performed as a result of requests coming from that channel are

assumed to be done by the entity named by the DN in the

certificate.

There are other standard protocols such as PGP [13] and

SPKI [14] that can be used to create a secure and authenticated

connection using only a public key to identify the requestor.

The target host may have a mapping of the public key to a

local user name for the connecting entity. The major difference

between these methods and TLS is that in the former the

public key of the user must be known by the target host by

some secure method, and if a local name is needed it must be

assigned to the private key by some out-of-band procedure. In

the case of X.509 certificates, both the public key and the

distinguished name are included in the certificate. The only

information that the target host needs to authenticate the user

is the public key of the CA that issued the X.509 certificate.

Therefore, the key distribution problem is reduced to

distributing the small set of CA public keys rather than user

keys and names.

In any public key scheme there must be a way to revoke a

public key, if the private key is known to be compromised.

In the X.509 case it is the responsibility of the CA that issued

the certificate to revoke the certificate and provide some way

for the relying parties to get this information. One method is

to publish a certificate revocation list (CRL). Another more

recent method is to use the online certificate status protocol

(OCSP) [26] to query the validity of the certificate. In the

PGP [13] and SPKI [14] schemes the holder of the private has

the responsibility of providing revocation information to any

relying party that may have its public key stored.

There have been a number of projects that allow one

credential to be used as the basis for obtaining a different

credential. KX.509 [27] is a Kerberized client-side program

that acquires an X.509 certificate using a client’s existing

Kerberos ticket. PKINT [28] describes how to use public key

cryptography to obtain a Kerberos ticket. MyProxy [29][30] is

a widely deployed online credential repository for Grids. It is

most often used to exchange a password-based credential to

obtain a GSI credential, but in the general case, it can be used

to exchange one arbitrary credential for another. MyProxy is

particularly valuable in that it ameliorates some of the

problems associated with a PKI, essentially making a PKI

easier to use and manage.

IV. SECURE COMMUNICATION

Secure communication provides the ability for two or more

entities to conduct a conversation with integrity, and

confidentiality if required. Doing this requires that the parties

to the communication authenticate to each other, and that the

corresponding communication channel support integrity

checking and possibly confidentiality. As mentioned earlier in

the paper, integrity is typically provided using standard hash

algorithms, and confidentiality is provided using encryption.

A number of different mechanisms exist for securing

communication channels. Some go back thousands of years,

and others have only been invented in the past 25 years.

The simplest mechanism for securing a communication

channel is through the usage of symmetric cryptography. If

both parties share a secret, such as a series of random

numbers, and a common encryption algorithm to transform

the plaintext to ciphertext the secret can then be used to

exchange confidential messages. A similar process using a

hash algorithm can be used to provide message integrity.

One of the most significant drawbacks to this approach is

how to distribute the secret to the appropriate parties without

anyone else knowing it. Post 1950, the banking industry

5

developed highly complicated schemes for distributing secrets

to banks to allow for secure communication between the

financial institutions. Typically, these keys had to be

transported in armored cars at great cost to the banks.

The most common way to address this problem today is

through the usage of asymmetric cryptography. Instead of

distributing a secret, parties who wish to communicate can

publish their “public keys” in an accessible place and others

can retrieve them for usage in asymmetric cryptography. In the

Grid, typically individual keys are not published, but instead

the public key of the CA that signed the public keys is

published. This becomes a root of trust for identity in the

PKI. Any public key signed by the trusted CA is trusted to

represent a unique individual or entity.

These keys can be used by protocols such as TLS or IPSec

[31] to establish a symmetric session key that is known by

both ends of the authenticated connection and used in all

subsequent communications. This is mainly done for

performance reasons, since symmetric cryptography is

typically significantly faster then asymmetric cryptography.

The Grid Security Infrastructure (GSI) is built on top of the

TLS protocol. The principles of GSI are described by the

Globus designers in [32][33]; similar principles are described

in [34] by the designers of Legion [35]. In addition to the

standard TLS protocol, GSI provides the ability to delegate an

X.509 proxy certificate to the remote entity thereby allowing

the entity to perform actions on your behalf. This is required

in a Grid where a job may be submitted to a scheduler that

needs to access files on your behalf, submit computations, and

return results. The other main difference between TLS and GSI

is that TLS, while a standard protocol, does not have a

standard programming API. GSI uses the IETF GSS API [36]

to provide a standard API for GSI programming. While in

theory the GSSAPI can be bound to multiple implementations

(such as Kerberos), in GSI it is almost always implemented

via OpenSSL [37].

So far in discussing secure communication we have

assumed nothing about the communicating entities. They

could be humans or computers. They could have a direct link

between them, or their messages could be routed through other

intermediaries.

IPSec [31] is often used for computer-to-computer security.

It provides authentication and encryption at the IP layer. Key

exchange can either be done manually, or through the Internet

Key Exchange (IKE) [38] protocol. Authentication is done

through the usage of Authentication Headers (AH) that contain

cryptographic checksums on the IP packets. After

authenticating a Session Security Association (SA) is created.

This SA is referenced in each IP packet header to track the

security parameters, i.e., what encryption algorithm is being

used. The Encapsulating Security Protocol (ESP) encrypts

each IP packet.

Both TLS and GSI operate at the transport layer. They

require an ordered reliable transport connection, so typically

they are implemented over TCP. While this has been

sufficient for most current Grid usages, recent moves towards

using Web Service [23] based technologies on the Grid make

this more problematic. In particular, the SOAP Protocol [39]

is being used by the emerging Open Grid Services

Architecture (OGSA) [40][41], which is being developed in

the Global Grid Forum [42]. Within OGSA, recently, the

rendering of Grid Services has moved from the Open Grid

Services Infrastructure (OGSI) [43] to WS-Resource

Framework [44]; however the reliance on SOAP remains.

SOAP messages can be routed independently of the

underlying transport connection. This is very useful to allow

intermediaries to act on the messages before passing them

onto the recipient. It can be used for load balancing, firewall

examination, etc. Although there may not be a direct TCP

connection between the two end points that are exchanging

messages they may still wish to authenticate each other and

communicate securely.

This requirement has lead to the development of message-

based security. By applying the cryptographic techniques

described earlier at the message layer, end-to-end message

security can be achieved. Hence, the last few years have seen

the development of several key standards to support message

layer security. The XML Digital Signature standard [45]

describes how to digitally sign arbitrary XML messages, and

the XML Encryption standard [46] describes similar

functionality for encrypting messages. Each of these standards

has particular bindings for how it should be used with SOAP

messages. Enhancements to SOAP messaging to provide

message integrity and confidentiality are being standardized in

OASIS [47] at the time of this writing (WS-Security 2004

[48]). In addition to these standards, recent work has begun on

moving the authentication protocol to the message layer. The

WS-Secure Conversation specification [49] describes how two

entities can authenticate each other at the message layer. The

most recent versions of Grid middleware such as Globus

Toolkit™ version 3 [50], pyGridWare [51], and

OGSI.NET/WSRF.NET [52][53] are using a version of WS-

Secure Conversation that has basically moved the TLS

authentication handshake up into the SOAP message layer.

V. TRUST, POLICY, AND AUTHORIZATION

 Trust can be generally defined as having confidence that a

party will behave in an expected manner despite the lack of

ability to monitor or control that other party. Normally trust

is positive, predicting a good outcome in uncertain

circumstances. Trust management is the process of deciding

what entities are to be trusted to do what actions. In an

environment where access policy is described in terms of the

identity of users or required attributes, trust management

consists of defining the sources of authorities for user

identification, attribute assignment and possibly policy

creation. In a system where users are granted authorization

tokens, the entire authorization system has been called trust

management [54]. In a system where users can delegate some

or all of their rights to others users the control of such

delegation is part of trust management.

In the context of this section, we define policy from the

second perspective stated by the GGF Grid Policy research

group [55] as fundamentally a set of principals or rules that

6

regulate the behavior of a system. External representations of

policy are highly desirable, in order to achieve flexibility,

transparency and scalability of a system. Policy related to

security may regulate trust, including delegation of trust,

authentication, authorization, and levels of message or data

integrity and confidentiality.

Authorization in the context of this section, is the

determination of who perform what actions. This is

determined as a result of evaluating the request of an

authenticated user against the trust and authorization policy

association with a resource domain.

In traditional single site environments, trust management is

usually handled outside of the authentication and authorization

systems. Authentication and access information is trusted

because it is found in a trusted site, e.g. /etc/password or

UNIX ACLs, or comes from a trusted server, e.g. Kerberos or

NIS [56]. The control on who can modify this information is

part of the system configuration and usually is restricted to a

set of privileged users. When permitted users and access to

resources need to be specified by off-site administrators this

approach does not work well. Usually system privileged users

have far greater privileges than would be needed just to

authorize access to a single set of resources making site

administrators reluctant to grant such privileges to users

outside their local domain. Resource systems such as AFS

[57] and LDAP [58] that are intended to be independent of

specific hosts support a privileged user whose privileges can

be limited to a subset of the resources. The granting of access

to such users is handled separately from the granting of access

to the protected resources. Thus, we can think of trust

management as a separate process to authorization.

The TLS protocol enforces a simple trust management

scheme in that only users whose X.509 certificates are signed

by the known CAs are allowed to connect via the TLS

protocol. GSI expands on this idea a bit, by adding a CA

signing policy file for each CA that specifies the namespace in

which it may issue names. In the GSI the only Grid level

authorization rules are in the Grid map file, which maps a

Grid DN to a local user account. The authority for this

information is the file in which it is found, and the

authorization to write in that file depends on a local privileged

account. This scheme turned out not to scale to the case where

remote administrators need to control access to local resources.

CAS [59] and VOMS [60] are solutions to this problem. In

those cases the trust in the authorization information comes

from a secure server that the local site has chosen to trust. In

both CAS and VOMS there is an independent trust policy

controlling what parties can change the information in the

server.

Authorization systems such as Akenti [61] and Permis [62]

explicitly state what authorities are allowed to grant access

privileges or user attributes. There is ultimately some root

source of authority who writes the first policy entry. However,

that entry can specify additional authorities and in what parts

of the resource domain they can issue assertions. In the case of

the current implementation of Permis, both trust and

authorization are found in a secure place by the policy decision

point. Since Akenti supports distributed policy statements, all

policy, authorizations and attributes are signed, and the signer

must be a recognized authority for whatever it is signing. The

trust management is integrated with the resource access policy,

as the authority to assert a property is explicitly stated as part

of the resource policy. Akenti specifies the CAs that may

issue X.509 certificates, the stakeholders that may write policy

for specified resources and the authorities that may issues

specified attributes for users.

SAML [63][64] and XACML [65][66] are two emerging

XML languages for use in authorization queries (SAML) and

authorization policy statements (XACML). SAML allows for

the explicit signing of assertions so that when attributes are

used in requesting access they can be strongly bound to an

authority. XACML supports explicit trust management in a

limited way. It allows a policy to specify a single issuer for an

attribute; however, the signing of policy is outside the scope

of the XACML schema. It just assumes that the policy will be

found in a secure manner.

The proposed Grid authorization standard [67] advocates

SAML authorization queries and responses as a standard

interface to an OGSA authorization service, but does not

specify a particular policy representation or a language for trust

management. If all policy is kept in a central place and/or

provided by a trusted server, then a simple trust management

policy that assumes a secure URL for the server will suffice.

However, a more distributed scheme requires explicit trust

management to allow it to scale for multiple resource sites,

multiple stakeholders, attribute authorities and CAs.

More broadly, OGSA plans to exploit both academic

research as well as commercial standards for policies (not

necessarily specifically related to security) on Grid services.

The WS-Agreement specification proposes support for service

management, which is “the ability to create Grid services and

adjust their policies and behaviors based on organizational

goals and application requirements” [68]. This is a form of

Service-Level Agreement (SLA) for OGSA. WS-Security

Policy [69] fits into the WS-Security framework [70] and

provides the ability of Web Services clients and services to

express preferences and requirements on such actions that can

utilize the WS-Security specification (such as “The service

recognizes password authentication but would prefer a

Kerberos token.”) Preconditions and obligation in policy

provide a compact means of representing what a user must do

before performing a specific action as well as what they must

do after an action (such as Ponder [71] and [72]). Research in

explicit policy management in Grids is starting to appear in

Grid workshops (e.g., [73][74][75]).

VI. ENFORCEMENT OF ACCESS CONTROL

In many ways, the enforcement of access control is the

most important and the most challenging part. The local

resource is ultimately responsible for enforcement of any

authorization decisions made by the authorization system. As

we have seen above there are many different approaches to

Trust Management, but typically these systems stop at the

point of defining their interactions with the enforcement point.

7

This point is sometimes referred to as a “Access Control

Enforcement Point” (AEF) [76] or a “Policy Enforcement

Point” (PEP) [77]. Both the IETF/DMTF and the OASIS

communities have proposed standards for exchanging

messages between the authorization system and the decision

point, but this still leaves the ultimate enforcement up to the

local resource. If mechanisms are not in place on the local

resource to enforce compliance with policy, this can be the

weakest link in the authorization chain. Modern operating

systems typically do not have mechanisms in place for

enforcing policy at the kernel level. A machine that has been

“hacked” typically has code installed on it to circumvent all

local enforcement functionality for the hacker. It also

circumvents any local auditing or logging enabled on the local

resource. Thus, it can appear that policy is being enforced

properly while in fact this is not true.

The first line of defense against misuse of a site’s resources

is often a site firewall. Such firewalls are implemented on

secure hosts, solely controlled by the site administrators and

implement simple site-wide access rules, for example,

allowing access only to specified ports and specified

protocols. Such a firewall is a serious obstacle to Grid

computing, which uses a wide and sometimes unpredictable

range of ports and new protocols. Additionally, firewalls are

often administered by site security personnel who may not be

familiar with the specific resources that are to be shared or the

secure Grid protocols that are being used. However, firewalls

are beginning to be seen as an opportunity to enforce Grid

security policy by creating Grid or application aware firewalls.

[78][79]. Work has also been started on adapting the BRO

adaptive intrusion detection system [80] to be aware of Grid

protocols.

Ultimately better mechanisms are required at the local

resource level to enforce authorization decisions. This includes

support for policy enforcement at the lowest level of the

system. It also includes mechanisms for creating secure audit

trails that can be used to prove that the authorization policy

was enforced correctly by the local resource.

VII. CONCLUSION

Security is undoubtedly one of the most challenging

aspects of Grid Computing. To date, the Grid security

community has been very successful by methodically

evaluating approaches and mechanisms that have been

previously developed for broader computing (such as

underlying cryptography) and adapting or further developing

these approaches to satisfy the unique, cross-domain

requirements of the Grid. Today, the Grid security community

faces a critical opportunity in that the Grid, which has

traditionally been the concern only of academic and national

lab communities around the world, is converging with the

commercial sector through the Open Grid Services

Architecture and Web Services. Well-founded approaches for

authentication and message security will be synergized with

new, emerging approaches for explicit trust and policy

management. In addition, significant challenges remain for

such topics as privacy management, denial of service, and

integrated, cross-domain auditing. Grid security and computer

security in general will never be completely “solved”, but

undoubtedly these new capabilities will ensure a more

trustworthy Grid infrastructure.

REFERENCES

[1] National Science Foundation TeraGrid. Available:
http://www.teragrid.org

[2] SETI@Home: The Search for Extraterrestrial Intelligence. Available:
http://setiathome.ssl.berkeley.edu/

[3] B. Clifford Neuman and Theodore Ts'o. Kerberos: An Authentication
Service for Computer Networks, IEEE Communications, 32(9):33-38.
September 1994.

[4] M. Humphrey and M. Thompson. Security Implications of Typical Grid
Computing Usage Scenarios. In Proceedings of the 10th International
Symposium on High Performance Distributed Computing (HPDC) , San
Francisco, California, August 7-9, 2001.

[5] C. Landwehr. Computer Security. International Journal of Information
Security. Spring-Verlag. Vo1, Number 1. Aug 2001. pp. 3-13.

[6] RSA Laboratories’ Frequently Asked Questions about Today’s
Cryptography, Version 4.1. Available:
http://www.rsasecurity.com/rsalabs/faq/

[7] P. Gutmann. Computer Security tutorial.
http://www.cs.auckland.ac.nz/~pgut001/tutorial/

[8] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321. Available:
http://www.faqs.org/rfcs/rfc1321.html

[9] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509 Public
Key Infrastructure Time-Stamp Protocol (TSP). RFC 3161. August
2001. Available : http://www.ietf.org/rfc/rfc3161.txt

[10] ANSI X3.106, "American National Standard for Information Systems-
Data Link Encryption," American National Standards Institute, 1983.

[11] Federal Information Processing Standards Publication 197. Novermber
2001. Available: http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[12] R. Rivest, A. Shamir, and L. M. Adleman, "A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems," Communications of
the ACM, v. 21, n. 2, Feb 1978, pp. 120-126.

[13] MIT Distribution Center for PGP (Pretty Good Privacy).
http://web.mit.edu/network/pgp.html

[14] C. Ellison, et.al SPKI Certificate Theory, IETF RFC 2693, available
from http://www.ietf.org/rfc/rfc2693.txt

[15] CCITT X.500 Series (1994) | ISO/IEC 9594,1-9:1994, Information
Technology - Open Systems Interconnection - The Directory

[16] ITU-T Recommendation X.509 (1997 E): Information Technology -
Open Systems Interconnection - The Directory: Authentication
Framework, June 1997.

[17] R. Housley, W. Polk, W. Ford, and D. Solo., "Internet X.509 Public Key
Infrastructure: Certificate and CRL Profile", RFC 3280, April 2002.

[18] R. Rivest and B. Lampson. “SDSI – A Simple Distributed Security
Infrastructure”. Available: http://theory.lcs.mit.edu/~rivest/sdsi10.html

[19] Shibboleth. http://shibboleth.internet2.edu/
[20] Passport, http://www.passport.net/Consumer/Default.asp?lc=1033
[21] Liberty Alliance Project. Introduction to the Liberty Alliance Identity

Architecture. Revision 1.0. March, 2003. http://www.projectliberty.org
[22] Linn, John, editor. Liberty Trust Models Guidelines. Version 1.0.

Liberty Alliance Project. http://www.projectliberty.org/specs/liberty-
trust-models-guidelines-v1.0.pdf

[2 3] W e b S e r v i c e s , h t t p : / / w w w . w 3 . o r g / 2 0 0 2 / w s / o r
http://www.webservices.org/index.php/article/archive/61

[24] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1. RFC 2246.
March 2004. Available: http://www.ietf.org/internet-drafts/draft-ietf-
tls-rfc2246-bis-06.txt

[25] A. Frier, P. Karlton, and P. Kocher, "The SSL 3.0 Protocol", Netscape
Communications Corp., Nov 18, 1996.

[26] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol
(O C S P) . R F C 2 5 6 0 . J u n e 1 9 9 9 . Available:
http://www.ietf.org/rfc/rfc2560.txt

[27] Olga Kornievskaia, Peter Honeyman, Bill Doster, and Kevin Coffman,
"Kerberized Credential Translation: A Solution to Web Access
Control," USENIX Security Symposium, Washington, D.C. (August
2001).

[28] B. Tung, C. Neuman, M. Hur, A. Medvinsky, S. Medvinski, J. Wray,
and J. Trostle. Public Key Cryptography for Initial Authentication in

8

Kerberos. RFC 1510bis. Aug 20, 2004. Available:
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-init-18.txt

[29] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository
for the Grid: MyProxy. Proceedings of the Tenth International
Symposium on High Performance Distributed Computing (HPDC-10),
IEEE Press, August 2001.

[3 0] M y P r o x y O n l i n e C r e d e n t i a l Repository.
http://grid.ncsa.uiuc.edu/myproxy/

[31] S. Kent, R. Atkinson. Security Architecture for the Internet Protocol.
R F C 2 4 0 1 . N o v e m b e r 1 9 9 8 . A v a i l a b l e :
http://www.ietf.org/rfc/rfc2401.txt

[32] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architecture
for Computational Grids. Proc. 5th ACM Conference on Computer and
Communications Security Conference, pp. 83-92, 1998.

[33] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, V.
Welch. A National-Scale Authentication Infrastructure. IEEE
Computer, 33(12):60-66, 2000.

[34] A. Ferrari, F. Knabe, M. Humphrey, S. Chapin, and A. Grimshaw. A
Flexible Security System for Metacomputing Environments. Proc. High
Performance Computing and Networking Europe 1999, Amsterdam,
April 1999.

[35] A.S. Grimshaw, A.J. Ferrari, F.C. Knabe and M.A. Humphrey, “Wide-
Area Computing: Resource Sharing on a Large Scale,” IEEE
Computer, 32(5): 29-37, May 1999.

[36] J. Linn. Generic Security Service Application Program Interface
Version 2, Update 1. RFC 2743. January 2000. Available:
http://www.ietf.org/rfc/rfc2743.txt

[37] OpenSSL. http://www.openssl.org
[38] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC

2409. November 1998. Available: http://www.ietf.org/rfc/rfc2409.txt
[39] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H.F. Nielsen.

SOAP Version 1.2 Part 1: Messaging Framework. W3C
R e c o m m e n d a t i o n 2 4 J u n e 2 0 0 3 . Available:
http://www.w3.org/TR/soap12-part1/

[40] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration. Draft of 6/22/02. http://www.gridforum.org/ogsi-
wg/drafts/ogsa_draft2.9_2002-06-22.pdf

[4 1] Open Grid Services Architecture (OGSA) Working Group.
https://forge.gridforum.org/projects/ogsa-wg

[42] Global Grid Forum. http://www.ggf.org
[43] S. Tuecke et. al. Open Grid Services Infrastructure (OGSI) Version

1.0. Global Grid Forum. GFD-R-P.15. Version as of June 27, 2003.
[44] I. Foster, et. al. Modeling Stateful Resources with Web Services.

Available: http://www.globus.org/wsrf/ModelingState.pdf
[45] E. Eastlake, J. Reagle, and D. Solo, eds. XML-Signature Syntax and

Processing. W3C Recommendation 12 February 2002. Available:
http://www.w3.org/TR/xmldsig-core/

[46] D. Eastlake, J. Reagle, eds. XML Encryption Syntax and Processing.
W3C Recommendation 10 December 2002. Available:
http://www.w3.org/TR/xmlenc-core/

[4 7] Organization for the Advancement of Structured Information
Standards (OASIS). http://www.oasis-open.org

[48] A. Nadalin, C. Kaler, P. Hallam-Baker, and R. Monzillo, eds. Web
Services Security: SOAP Message Security 1.0 (WS-Security 2004).
Monday, 15 March 2004. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

[49] G. Della-Libera et. Al. Web Services Secure Conversation Language
(WS-SecureConversation). Version 1.0. December 18, 2002.
Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-secureconversation.asp

[50] Globus Toolkit version 3.x . http://www.globus.org/gt3/
[51] Python OGSI Client and Implementation (pyGridWare). http://www-

itg.lbl.gov/gtg/projects/pyGridWare/index.html
[5 2] G. Wasson, N. Beekwilder, M. Morgan, and M. Humphrey.

OGSI.NET: OGSI-compliance on the .NET Framework. In
Proceedings of the 2004 IEEE International Symposium on Cluster
Computing and the Grid. April 19-22, 2004. Chicago, Illinois.

[5 3] OGSI.NET and WSRF.NET. University o f Virginia
http://www.cs.virginia.edu/~humphrey/GCG/ogsi.net.html

[54] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote:
Trust Management for Public-Key Infrastructures. In Proceedings of
the 1998 Security Protocols International Workshop, Springer LNCS
vol. 1550, pp. 59 - 63. April 1998, Cambridge, England. Also AT&T
Technical Report 98.11.1.

[55] Grid Policy Research Group, GGF
https://forge.gridforum.org/projects/policy-rg/

[56] H. Stem, M. Eisler, R. Labiaga. Managing NFS and NIS, 2nd Edition
O’Reilly, July 2001

[57] M. Satyanarayanan. Scalable, Secure, and Highly Available
Distributed File Access. IEEE Computer. May 1990, Vol 23, No. 5.

[58] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access
Protocol (v3). RFC 2251. December 1997. Available:
http://www.ietf.org/rfc/rfc2251.txt

[59] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. A
Community Authorization Service for Group Collaboration.
Proceedings of the IEEE 3rd International Workshop on Policies for
Distributed Systems and Networks, 2002.

[60] Virtual Organization Membership Service (VOMS). http://hep-project-
grid-scg.web.cern.ch/hep-project-grid-scg/voms.html

[61] Mary Thompson, William Johnston, Srilekha Mudumbai, Gary Hoo,
Keith Jackson. Certificate-based Access Control for Widely
Distributed Resources . Proceedings of the Eighth Usenix Security
Symposium, Aug. `99

[62] David Chadwick and Alexander Otenko. The PERMIS X.509 role
based privilege management infrastructure. Future Generation
Computer Systems. Volume 19, Issue 2 (February 2003). Special
section: Selected papers from the TERENA networking conference
2002 .pp. 277 - 289

[6 3] Organization for the Advancement of Structured Information
Standards (OASIS). Assertions and Protocol for the OASIS Security
Assertion Markup Language (SAML) V1.1. OASIS Standard, 2
September 2003.

[64] OpenSAML – an Open Source Security Assertion Markup Language
implementation. Internet2. http://www.opensaml.org/

[65] Organization for the Advancement of Structured Information
Standards (OASIS). Extensible Access Control Markup Language
(XACML) Version 1.0. OASIS Standard, 18 February 2003.
http://www.oasis-open.org/committees/xacml/

[66] Sun’s XACML Implementation. http://sunxacml.sourceforge.net/
[6 7] Global Grid Forum OGSA Authorization Working Group.

https://forge.gridforum.org/projects/ogsa-authz
[68] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu. Agreement-

based Service Management (WS-Agreement). Global Grid Forum
draft-ggf-graap-agreement-1. Version as of Feb 8, 2004.

[6 9] G. Della-Libera et. al. Web Services Security Policy (WS-
SecurityPolicy). Version of 18 December 2002. http://www-
106.ibm.com/developerworks/library/ws-secpol/

[70] D. Box, et. al. Web Services Policy Framework (WS-Policy). Version
of 28 May 2003. http://www-106.ibm.com/developerworks/library/ws-
polfram/

[71] N. Dulay, Lupu, E., Sloman, M. and Damianou, N. 2001. A Policy
Deployment Model for the Ponder Language. Proc. IEEE/IFIP
International Symposium on Integrated Network Management
(IM’2001)

[72] C. Bettini, Jajodia, S., Wang, X.S., Wijesekera, D. 2002. Obligation
Monitoring in Policy Management. Policy 2002 Workshop.

[73] B. Sundaram, and B. Chapman. XML-Based Policy Engine Framework
for Usage Policy Management in Grids. Proceedings of the Third
International Workshop on Grid Computing (Grid 2002). Baltimore,
MD, November 2002.

[74] D. Verma, S. Sahu, S. Calo, M. Beigi, and I. Chang. A Policy Service
for GRID Computing. Proceedings of the Third International Workshop
on Grid Computing (Grid 2002).

[75] G. Wasson and M. Humphrey. Policy and Enforcement in Virtual
Organizations. In 4th International Workshop on Grid Computing
(Grid2003) (associated with Supercomputing 2003). Phoenix, AZ. Nov
17, 2003.

[76] E. F. Michiels (co-editor). Information Technology-OSI-Security
Frameworks for Open Systems: Access Control Framework . 1995.

[77] D. Durham, ed. The COPS (Common Open Policy Service) Protocol.
RFC 2748. January 2000. Available: http://www.ietf.org/rfc/rfc2748.txt

[78] I. Djordjevic, T. Dimitrakos, C. Philips An Architecture for Dynamic

Security Perimeters of Virtual Collaborative Networks Proceedings of
the 9th IEEE/IFIP Network Operations and Management Symposium
(NOMS 2004) IEEE CS, (April 2004)

[7 9] GRASP project, Grid-like architecture for Application Service
Providers, http://www.bitd.clrc.ac.uk/Activity/ACTIVITY=GRASP;

[80] V. Paxson, Bro: A System for Detecting Network Intruders in Real-

Time, Computer Networks, 31(23-24), pp. 2435-2463, 14 Dec. 1999. (

HTML)

9

[81] IBM and Microsoft. Security in a Web Services World: A Proposed
Architecture and Roadmap. April 7, 2002,version 1.0. http://www-
106.ibm.com/developerworks/library/ws-secmap/

[82] N. Nagaratnam et. al. Security Architecture for Open Grid Services.
Global Grid Forum Working Draft. Revision as of 6/5/2003.

[83] F. Siebenlist et. al. OGSA Security Roadmap: Global Grid Forum
Specification Roadmap towards a Secure OGSA. Global Grid Forum
Working Draft. July 2002.

Marty A. Humphrey was awarded the Bachelor of
Science degree in electrical and computer engineering in 1986 and Master
of Science degree in electrical and computer engineering in 1988 from
Clarkson University, Potsdam, NY, and a PhD in computer science from the
University of Massachusetts in 1996. From 1998 to the present, he has been
with the Department of Computer Science at the University of Virginia,
Charlottesville, VA where he was first a Research Assistant Professor and is
currently (2002-) an Assistant Professor. His areas of research include many
aspects of Grid Computing, including security, programming models,
performance, Grid testing, and Grid usability. He is active in the Global Grid
Forum, where he serves as co-director of the Security Area and also co-
chair of the OGSA Security working group.

 Mary R. Thompson is currently a Staff Scientist and Group
leader at Lawrence Berkeley National Laboratory. She received a BS in
Physics from Stanford University in 1963 and an MS in Computer Science
from the University of California at Santa Barbara in 1976. She joined the
Computational Research Division at Berkeley National Laboratory in 1995.
Prior to that she worked at Carnegie Mellon university on the Mach and
Hydra operating systems, and at the Laboratory for Computer Science at
MIT on the Multics operating system. Her research interests include
distributed access control, secure communications, and PKI based
applications. She is a member of the Global Grid Forum, active in the
security area, and an IEEE member.

 Keith R. Jackson is currently a Scientist at
the Lawrence Berkeley National Laboratory, where he is a member of the
Secure Grid Technology Group. He has been involved in developing a PKI
based authorization system (Akenti), and a secure advanced reservation
system (STARS). He is currently a Principal Investigator on three projects
focused on developing component-based interfaces to "Grid" services, and
prototyping large-scale computational and data "Grids". His interests include
distributed access control, distributed system security, advanced
reservations, network quality of service, component based middleware, and
PKI based applications.

